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Abstract

The shipping industry is investigating alternative fuels for ships, in order to comply with
stricter emission requirements implemented by International Maritime Organization
(IMO). Liquefied Natural Gas (LNG) is a promising alternative since it could reduce
emissions substantially and offer potential fuel cost savings. But the investment in LNG
fuelled vessels is currently facing a high degree of uncertainty, such as the differential
between the prices of LNG and conventional maritime fuels, the availability of LNG and
the reliability of its supply chain.
This paper makes an attempt to study the possibility of investing in LNG powered
vessels under uncertainty. A deferral option model is proposed to quantify the value of
flexibility for deferral based on multi-variables following specified stochastic processes.
By exploiting the stochastic processes, it is possible to determine the value of deferral
by solving a dynamic program using a least squares Monte Carlo simulation. The model
is tested on an investment of a new chemical vessel with 19,000 dwt powered by LNG.
Empirical analysis may suggest different investment strategies based on the
probabilities of exercising an option and related option values each year. It indicates
further that the attractiveness of LNG as ship fuel is dominated by a couple of
parameters: difference of ship prices between a LNG powered vessel and a reference
one, the price differential between LNG and conventional fuel prices, the share of the
sailing time inside Emission Control Areas (ECAs), and the supply cost of LNG.

Keywords: LNG powered vessel, Environmental compliance, Deferral option model,
Monte Carlo simulation

Introduction
The shipping industry is a substantial emitter of air pollutants such as nitrogen oxides

(NOx), sulphur oxides (SOx), carbon monoxide (CO) and carbon dioxide (CO2), because

the vast majority (95%) of the world’s shipping fleet runs with engines powered by Inter-

mediate Fuel Oil (IFO) for economic reasons (Cullinane and Bergqvist 2014). Though

IFOs are cost effective, they contain high levels of asphalt, carbon residues, sulphur and

metallic compounds and have high viscosity and low volatility properties as well.

The International Maritime Organization (IMO) is responsible for regulations on

ship emissions aiming at protecting and improving the ocean environment. The Annex

VI of the international convention for the Prevention of Pollution from Ships (MAR-

POL) came into force on 19 May 2005 and a Annex VI with tightened limits was
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adopted in October 2008 entering into force on 1 July 2010. In the Annex VI, limits are

set on emissions of sulphur dioxide and nitrogen oxides both in Emission Control

Areas (ECAs) and in global waters. The caps of ship gas emissions, in particular SOx

and NOx, are subject to a series of step changes over the years, which are described in

Tables 1 and 2.

In order to meet these emission requirements, there are diverse abatement technologies

that could be adopted by ship owners. Table 3 shows a summary of the emission reduc-

tion systems currently used in ships (Burel et al. 2013). Among all of these measures, the

most realistic alternatives are three if the focus is to reduce SOx and NOx emissions, sug-

gested by Acciaro (2014). The first is the switch to higher-quality fuels, low in sulphur

contents. The second is the use of exhaust gas cleaning systems, often referred to as mari-

time scrubbers, in combination with selective catalytic reduction to reduce nitrogen ox-

ides for new vessels. And the third one is the use of vessels operating on LNG. Ship

specifications, advantages and disadvantages of these three alternatives can be demon-

strated in Table 4. It is further discussed in Acciaro (2014) that the use of scrubbers at sea

is not well established due to the lack of detailed technical studies and accurate cost

figures. Therefore, the alternative of installing exhaust gas cleaning systems is out of the

scope and the focus is on distillate fuels (distillate oils include diesel fuels and fuel

oils, e.g. Marine Gas Oil (MGO) and Intermediate Fuel Oil (IFO)) or on LNG.

Among the technologies that are currently evaluated, the possibility for ships of

switching to LNG as a main fuel has gained significant concerns during the last few

years. The use of LNG as the fuel for vessels has potentially substantial advantages,

since LNG allows for a significant reduction of NOx, SOx. It is quite attractive in

particular for ECA compliance, as clearly demonstrated in Table 3. However, technical

maturity, availability and costs appear to be the most critical issues for the success of

LNG as a maritime fuel on a large scale (Acciaro et al. 2013).

The investment returns of two alternatives of using distillate oils or LNG are greatly

dependent on the price differences between distillate oils and LNG. However, the future

prices of LNG are largely unknown as an international market for natural gas does not

exist and the future prices of IFO and MGO are largely volatile caused by global un-

stable economic and political situations. The uncertainty associated with price differen-

tials among fuels could not be taken into consideration in a traditional discounted cash

flow (DCF) analysis when making the economic evaluation of the ship investment. The

traditional approach assumes that management, having made the decision to initiate a

capital investment, will manage cash flows continuously as planned until the end of its

pre-specified useful life. This approach ignores the ability of management to adapt or

revise decisions in response to unexpected market developments (Lai and Trigeorgis

1995; Bendall and Manger 1988; Bendall and Stent 2007).

Table 1 Fuel sulphur contents: global and ECA limits

Date Global limit [% mass] Date ECA limit [% mass]

Prior to 1/1 2010 4.5% Prior to 1/7/2010 1.5%

After 1/1 2010 3.5% After 1/7/2010 1.0%

After 1/1 2020 0.5% After 1/1/2015 0.1%

Source: Burel et al. (2013)
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Real Options Analysis (ROA), in contrast, incorporates both the uncertainty inherent

in the operating business environment and the ability to actively manage, control or

alter, (albeit to switch inputs or technology, expand, abandon, defer, etc.) a project in

response to the changing circumstances when new information becomes available

(Trigeorgis 1991, 1993a, 1993b; Bendall and Stent 2007). There is a wide body of litera-

ture in the field of real options. Trigeorgis (1995, 1996) amongst others provide a good

summary of the field. Till now the Real Option Analysis (ROA) has been applied

successfully into the shipping industry to analyze managerial strategies, see Alizadeh

and Nomikos (2009) for a review, including the decision to enter or exit a certain

market (Dixit 1989, 1992); the extension of a time charter agreement (Bjerksund and

Ekern 1995); the investment in a new service (Bendall and Stent 2003); the switch

between dry and wet markets (Sødal et al. 2008, 2009); the investment in new vessels

or portfolio of vessels (Hopp and Tsolakis 2004; Bendall and Stent 2003, 2005, 2007;

Dikos 2008); or the change of flag for a vessel (Kavussanons and Tsekrekos 2011).

Until recently, the real options used for investment related to environmental compli-

ance in shipping can be seen in Acciaro et al. (2013) and Acciaro (2014), which proposes

a decision support model for ship owners based on the use of an option to defer in order

to assess the viability of postponing investment in retrofitting vessels for environmental

compliance. One of the main limitations in Acciaro et al. (2013) is that the price differen-

tial between LNG prices and distillates was fixed. Although the limitation was overcome

in Acciaro (2014) by making the price differential change yearly, prices of LNG and

Table 2 NOx emission reduction programme

Tier Date NOx limit [g/kwh]

n<130 130 ≤ n≥ 2000 n≥ 2000

Tier I 2000 17.0 45 × n-0.2 9.8

Tier II 2011 14.4 44 × n-0.23 7.7

Tier III 2016a 3.4 9 × n-0.2 1.96

n = engine speed [rpm]
aonly for NOx ECAs (TIER II applies outside ECAs)
Source: Burel et al. (2013)

Table 3 Gas emission reduction resulting from operating with different emission control systems
compared to the use of LNG

Abatement technology/measure Emission reduction (%)

SOx NOx PM CO2

Basic internal engine modifications for 2 strokes, slow speed only 0 −20 0 0

Advanced internal engine modifications 0 −30 0 0

Direct water injection 0 −50 0 0

Humid air motors 0 −70 0 0

Exhaust gas recirculation + scrubbing −93 −35 −63 0

Selective catalytic reduction (2.7% S residual oil fuel) 0 −90 0 0

Sea water scrubbing − 75 0 −25 0

Fuel switching (from 2.7% S to 1.5% S IFO) −44 0 −18 0

Fuel switching (from 2.7% > 1.5% S IFO) − 81 0 −20 0

Low S marine diesel (from 0.5% to > 0.1% S) −80 0 0 0

Liquefied Natural Gas (LNG) −90 −80 −100 −20

Source: Burel et al. (2013)
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distillates are just one sample of the fuel price distributions. If the sample path is changed,

cost savings will be changed as well, and this may significantly influence the results.

In our paper, we propose a deferral option model where fuel prices are characterized

by the mean-reverting geometric Brownian motion, and 300 sample paths are used to

calculate the frequency of an investment opportunity. A dynamic program is designed

to determine the value of the flexibility by making use of a least squares Monte Carlo

simulation algorithm.

The main differences of our research with previous studies rest with three aspects. First,

investment approaches incorporating uncertainty are abundant, but very little has dealt

satisfactorily with non-stationary variables. In our study, fuel prices are characterized by

non-stationary stochastic processes, because it seems not possible to make the prediction of

these prices in the long term. Second, how the optimal time to invest changes with different

paths and under different assumptions about market conditions is assessed. Third, various

scenarios influencing the time to exercise option are discussed, providing support for ship-

ping companies to make the investment decisions. The proposed model not only provides a

tool to analyze the investment strategy under uncertainty, but it also provides an insight into

the interdependency of variants influencing the investment in LNG powered vessels and will

show the required flexibility in the decision-making for shipping companies.

This paper is structured as follows. The next section describes a proposed analytical

modelling approach to measure the value of flexibility in deferring under non-stationary

stochastic demand using real options solution methodologies. This is followed by a

Table 4 Ship specifications, procs and cons of three emission abatement measures

Options A B C

Oil powered
ship with SCR

Oil powered ship
with scrubber + SCR

LNG powered
ship with SCR

Main engines and propulsion

Engine type Diesel Diesel Dual Fuel Diesel

Propulsion system Direct Direct Direct

Auxiliary engine

Engine type Diesel Diesel Dual Fuel Gas

Fuel (in ECA) LSFO (Low Sulphur
Fuel Oil) (0.1% S)

IFO LNG, LSFO (0.1% S)

Off ECA LSFO (0.5% S) LNG

SCR Installed Installed Installed

Scrubber Not Installed Not

Procs -No or little
modifications and
investment needed
-Well known and
tested

-Lower fuel costs
-Fuel available

-Potential CO2 reductiona

-Much lower maintenance

Cons -Higher fuel costs
-Fuel availability uncertain
-Wear and tear

-Higher OPEX, fuel
consumption and
maintenance costs
-Ship design and
stability challenges
-Sludge management:
need to create a logistics
chain and adapt port
infrastructure

-More space needed for
the gas system on board
-Bunkering points and
associated logistics to be
created
-Safety aspects increase
complexity of the supply
chain, ship design
and operations
-Skilled and trained crew

ameans the contribution of LNG as the fuel to CO2 reduction remains a topic of debate
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presentation of the data properties. We then proceed to present the empirical analysis.

Some conclusions and directions for further research are addressed in the last section.

Methodology
Uncertainty in real option analysis can be modelled as nonstationary stochastic processes,

where the distribution may change over time. According to Dixit and Pindyck (1994), a

stochastic process is defined as ‘a variable that evolves over time in a way that is at least in

part random.’

Two common forms of such processes are the Geometric Brownian Motion with

drift and the Ornstein-Uhlenbeck mean-reverting process. In relation to the LNG and

distillate fuels markets, Geometric Brownian Motion (GBM) model, however, seems

to have some drawbacks due to the fact that it does not capture the special character-

istics such as mean reversion. Given a starting price, GBM would accept this as a

normal event and would proceed randomly from there with no consideration of prior

price levels and no greater probability of returning to the average price level. It allows

that the price fluctuation could reach an unrealistic level when GBM is used to model

spot prices. Mean reversion can be thought of a modification of the random walk,

where price changes are not completely independent of one another but rather are re-

lated. Hence, prices of distillate fuels and LNG are supposed to follow mean-reverting

processes in our study, which is bolstered by Li (2007), who argues that over time, the

process of fuel prices tends to drift towards its long-term mean: such a process is

called mean-reverting.

The geometric Brownian motion of Intermediate Fuel Oil (IFO) and LNG prices with

mean-reverting can be defined by Dixit and Pindyck as:

dPo;t ¼ ηo Po−Po;t
� �

Po;tdt þ σoPo;tdW ð1Þ

dPg;t ¼ ηg Pg−Pg;t
� �

Pg;tdt þ σgPg;tdW ð2Þ

Where Po, t means IFO prices at time t. Po is the mean of the variable Po, t, Pg, t refers

to LNG prices at time t, dW is an increment in a Wiener process and ηg and σg are

parameters, Pg denotes the mean of the variable Pg, t.ηo and σo are parameters.

Trigeorgis (1996) presents a framework for using real options in strategic manage-

ment by expanding on the NPV:

Expanded NPV ¼ NPV þ option premium

The NPV is expanded on by incorporating the option premium, which represents the

value from options that a static NPV analysis would not be able to capture. Benaroch

and Kauffman (2000) present a clear comparison of this valuation versus a traditional

discounted cash flow method. Chow and Regan (2011) conclude that many different

kinds of real options can fit into the option premium in the framework provided by

Trigeorgis. For example, Benaroch (2002) lists the many types of real options that can

apply to information technology, including deferral, staging, scaling, abandonment, out-

sourcing, leasing, and compounding (interaction of multiple options).

Given an expiration time T and a project value based on one or more nonstationary

stochastic processes, the problem of deciding the optimal time to exercise an option can
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be interpreted as an optimal stopping problem, according to Dixit and Pindyck (1994). An

example of a real option defined as a stopping problem is the deferral option.

The deferral option can be solved via dynamic programming and it involves optimizing

the binary decision to continue a process for another incremental time period or to stop

it at the current time period. The problem is decomposed into a backward dynamic

program, where the objective function in each time state is defined as follows:

Φt xtð Þ ¼ max
ut

πt xt ; utð Þ þ e−ρΔtEt ΦtþΔt xtþΔtð Þ½ �� � ð3Þ

Where ut is the decision to continue or stop the process at time t, πt is the profit flow

in the current time state as a function of ut and state variable xt, ρ is the discount rate

for continuous compounding, Et is the expectation at time t, and Φt is the value of the

control problem. Equation (3) is commonly called the Bellman equation or the funda-

mental equation of optimality (Dixit and Pindyck 1994).

In our research, the objective is to maximize the savings by comparing the operation

of the LNG-powered vessel to a conventional one. The NPV of cost savings is based on

the difference of total costs between these two types of vessels, as described in Eq. (4).

According to Eq. (3), the proposed model in our paper actually is a Bellman equation

for determining the value of an investment opportunity with an option to defer as a

function of stochastic fuel prices, as can be seen in Eq. (5).

π Po;Pg
� � ¼ Xn

j¼1

1

1þ ρð Þ j f Po; j;Qo; j

� �
−
Xn
j¼1

1

1þ ρð Þ j f Pg; j;Qg; j

� �
þ ΔKo;g þ 1

1þ ρð Þn ΔRo;g

ð4Þ

Where π is the net present value of the total cost savings between a LNG fuelled

vessel and a conventional one. f(Po, j,Qo, j) denotes annual operational costs and voyage

costs dependent on the stochastic fuel oil prices at time t. f(Pg, j,Qg, j) refers to annual

operational costs and voyage costs dependent on the stochastic LNG prices at time t,

ΔRo, g means the difference of the residual values for two types, while ΔKo, g is the

difference of capital costs of two types of vessels.

Φtn Po;tn ;Pg;tn

� � ¼ max πtn Po;tn ; Pg;tn

� �
; 1þ ρð Þ−ΔtE Φtnþ1 Po;tnþ1 ; Pg;tnþ1

� �� 	n o
ð5Þ

Where πtn is the net present value of the total cost savings between a LNG fuelled

vessel and a conventional one and it is a function dependent on the stochastic LNG

prices, denoted as Pg;tnþ1 and fuel oil prices, denoted as Po;tnþ1 . tn is a time state such

that tn + 1 − tn = Δt and n = T/Δt is the final time horizon, but n = 0 is the initial time

state being solved for.

In this example, the process is deferral and in each time state the problem is whether to

continue deferring or to stop deferring and to invest immediately with a value of 0. The

problem can be solved using differential equations if the state variable is an Ito process.

The deferral option in the investment of LNG vessels is a single option dynamic

programming problem with an objective function that depends on the stochastic LNG

and fuel oil prices. Because of the complex nature of this problem, it is not suitable to use

finite difference methods to solve them, which may have a high computational cost. In

this case, a relatively fast converging numerical option valuation method is necessary. This

requirement rules out traditional Monte Carlo simulation methods as well. The Least
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Squares Monte Carlo simulation method (LSM) refined by Longstaff and Schwartz (2001)

is therefore chosen for solving the option value, see Chow and Regan (2011). To apply this

method, fuel oil prices Po, t and LNG prices Pg, t need to be in a discrete format and the

certain assumptions need to be made for the cost function to obtain the PV.

The price simulation can be derived from Eqs. (1)–(2) if Ito’s lemma is applied to

these stochastic functions.

Po;t ¼ Po;t−Δt exp ηo Po−Po;t
� �

−
1
2
σo2


 �
Δt þ σoWΔt


 �
ð6Þ

Pg;t ¼ Pg;t−Δt exp ηg Pg−Pg;t
� �

−
1
2
σg2


 �
Δt þ σgWΔt


 �
ð7Þ

Where ηo is a generalized drift parameter and σo is a generalized diffusion parameter

for oil-based prices; ηg is a generalized drift parameter and σg is a generalized diffusion

parameter for LNG prices, and WΔt can be simulated with a normal inverse function

with ε
ffiffiffiffiffi
Δt

p
, where ε ∼N(0, 1) Time series data of fuel prices would be necessary to

estimate the parameters.

The LSM solution algorithm

Because fuel prices are assumed to follow stochastic processes, numerical methods are

necessary to solve realistic real option dynamic programming problems. Trigeorgis (1996)

describes several common numerical methods developed to handle real option analysis.

The methods can generally be categorized into three classes: finite difference, binomial

lattice methods, or Monte Carlo simulation.

Chow and Regan (2011) point out that the finite difference method (Brennan and

Schwartz 1977) is not very suitable for multiple options where the differential would be

difficult to specify. The binomial lattice method (Cox et al. 1979) is not able to handle

multidimensional variables very well because of its inherent method of simplifying probabil-

ity distributions into branches. Traditional Monte Carlo simulation methods developed by

Boyle (1977) are suitable in solving dynamic programming problems of multiple variables,

while it has very high computational cost because at any time step, the backward dynamic

program requires foreseeing the expected continuation function in the future time step.

This complication resulted in the Least Squares Monte Carlo simulation method (LSM)

refined by Longstaff and Schwartz (2001). LSM reduces the computational cost by using

least squares regression at each intermediate step, based on the results of the following

future time step along all the simulation paths (Chow and Regan 2011).

The LSM algorithm developed by Chow and Regan (2011) is applied into this research.

The algorithm is shown below for given prices Pg;tn and Po;tn with estimated parameters

for Ito processes, interest rate ρ, time horizon T and a number of simulation paths P.

1. For each path ω∈ P and time state tn, 0 ≤ n ≤ T/Δt, generate simulated LNG and

fuel oil prices using Eqs. (6)–(7).

2. For the known Pt0 and for each of the simulated PtnðωÞ, 0 ≤ n ≤ T/Δt, ω∈ P,

evaluate an objective such as Eq.(4) to obtain πtn or the cost function valuation

algorithm to obtain πtnðPg;tn ;Po;tnÞ.
3. Starting from n = T/Δt, use LSM to solve the backward dynamic program Eq. (5).
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① If n = T/Δt, let ΦtnðPg;tnðωÞ;Po;tnðωÞÞ ¼ maxð0;πtnðPg;tn ; Po;tnÞÞ.
② Keep track of the optimal decision with the variable θ(ω, tn); if ΦtnðPg;tnðωÞ; Po;tn

ðωÞÞ > 0, then that sample path is “in the money” and is assigned a value of θ(ω,

tn) = 1. Otherwise, let θ(ω, tn) = 0.

③ Let n = n − 1. If n = 0, go to step 4.

④ Estimate Φ̂tnþ1 using least squares regression with Hermite polynomial series,

although other polynomials that form an orthonormal basis such as Laguerre series

can also be used:

Hi xð Þ ¼ −1ð Þiex2=2 di

dxi
e−x

2=2 ð8Þ

The (i + 1) th polynomial can be represented recursively as

Hiþ1 xð Þ ¼ xHi xð Þ−iHi−1 xð Þ ð9Þ

A regression function with ∏ polynomials could be of the form

Φtnþ1 ¼
XΠ
i¼0

βi −1ð Þiex2=2 di

dxi
e−x

2=2 ð10Þ

Where the βi coefficients are estimated using least squares. The x values are

πtnðPg;tnðωÞ;Po;tnðωÞÞjπtn>0 at each simulation path at the particular time interval.

⑤ Use the estimate Φ̂tnþ1 to solve Eq. (5). If the optimal decision is to wait because

ð1þ ρÞ−Δt � E½Φ̂tnþ1 � > πtnðPg;tnðωÞ; Po;tnðωÞÞ, then the option on that simulation path is

still in the money and θ(ω, tn) = 1.

⑥ If n > 0, go to step ③. Otherwise, the value obtained from Eq. (5) is the value of option.

4. If Φt0 > 0, then the option is worth keeping. If ð1þ ρÞ−ΔtE½Φ̂t1 � > πt0ðPg;t0 ;Po;t0ÞÞ
> 0, then the best strategy is to defer the option. If Φt0 > 0 and ð1þ ρÞ−ΔtE½Φ̂t1 �≤
πt0ðPg;t0 ; Po;t0ÞÞ then the best strategy is to invest immediately.

5. The algorithm may need to be returned at increasing values of ∏ until the option

value stops increasing beyond some tolerance.

Empirical analysis
The real options analysis with LSM solution algorithm is applied to the investment

strategy in shipping. As introduced in the first section, the most realistic alternatives

are three if the focus is to reduce SOx and NOx emissions: the switch to higher-quality

fuels, the use of exhaust gas cleaning systems, in combination with selective catalytic

reduction to reduce nitrogen oxides for new vessels; and the use of vessels operating

on LNG. Our research focuses on distillate fuels or LNG for a new chemical ship for

the environmental compliance. The alternative of installing exhaust gas emission reduc-

tion devices, such as scrubbers, is beyond the scope of this paper, as explained in

Section 1. Before presenting the model results, figures and information used in this

paper will be explained at first.
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Data description

The model has been tested using a chemical vessel of 19,000 dwt burning LNG and a

reference one burning maritime fuels. The specifications of the vessels are given in

Table 5 below. In the analysis we assume the economic life of one vessel is 20 years.

Ships are operated at the voyage of Houston-Ulsan. Days at sea are 340. The newbuild-

ing price of the LNG powered ship in June 2015 was $34.4 million and the price of a

reference one is assumed to be 20% lower. Operational costs for the LNG powered ship

are about $6000 per day and that for a reference one are $5000 daily. We assume the

residual values of both ships are 25% of new ship values based on the previous data.

Ship related data in this research are obtained from Stolt Nielsen Limited in Shanghai

and Dingheng Shipbuilding Co. Ltd. The risk free interest rate is 3.5% annually.

The study makes an attempt to solve the probability of each option of investing in a

LNG powered vessel between 2016 and 2020. Costs are estimated of a LNG powered

vessel in comparison to a reference vessel burning maritime fuel oils. For a conven-

tional ship, 0.1% LSFO (low sulphur fuel oil) is used inside an ECA. Off the ECA, fuel

oils not exceeding 3.5% sulphur could be used by 2020, after which the global sulphur

cap will be reduced to 0.5%. For the LNG powered ship, dual-fuel low speed diesel

engine is installed as main engine. LNG is the main fuel and LSFO is the pilot fuel, so

SCR is required to comply with Tier III. At the voyage of Houston-Ulsan, it is

estimated that one ship operates roughly 25% within the ECA annually.

In order to estimate annual voyage costs of both a LNG powered ship and a conven-

tional one during their economical life, we simulate fuel prices, i.e. IFO, MGO and LNG,

instead of using the fixed prices because of their stochastic properties. Weekly prices of

IFO and MGO at Singapore are utilized over the period starting from Jan 1990 to June

Table 5 Ship Parameters for two types of chemical ships

Options Unit Traditional Typea New Typeb

Oil ship with SCR LNG fuelled
ship with SCR

Main engines and propulsion

Engine speed – Low Low

Engine type – Diesel Dual Fuel Diesel

Propulsion system – Direct Direct

Auxiliary engine

Engine speed – Medium Medium

Engine type – Diesel Dual Fuel gas

Fuel (in ECA) – LSFO (0.1% S) LNG, LSFO

Off ECA – MGO (0.5% S) LNG

SCR Installed Installed

Deadweight DWT 19,000 19,000

Speed Knot 13.3 13.3

Days at sea Days 35 35

Days at ports Days 13 13

Fuel consumption at sea Tonnes/day 23.7 20.88

Fuel consumption at port(MGO) Tonnes/day 9.4 3.12

Source: Stolt Nielsen Chemical Company in Shanghai and Dingheng Shipbuilding Co. ltd
a means the ship burning oil-based fuels, while b denotes the ship burning LNG
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2015, resulting in 1325 observations. While weekly prices of LNG are from Jan 2000 to

June 2015 due to the difficulty in the availability of the data and there are 804 observa-

tions. Since LNG prices at different bunkering stations vary substantially, LNG prices at

Henry Hub in the USA and Japan are considered in this research for the voyage of

Houston-Ulsan. The LNG prices at Japan and Henry Hub are market prices and LNG

prices for the vessels actually include 10% addition of the market prices as consumption

tax and cost for LNG bunkering, as explained by Adachi et al. (2014). In other words, the

supply cost of the LNG price is set initially at 10% of the market price. Prices of oil-based

fuels are obtained from Clarksons Research Co. Ltd, n.d. and prices of LNG are from an

Energy Consultancy Company in Beijing. The price patterns of all fuel prices could be

seen in Figs. 1 and 2.

Investment deferral option

Uncertainty of an investment in a LNG powered ship lies in prices of oil-based fuels

and LNG, each of which could evolve as a mean-reverting geometric Brownian motion,

as explained in Section 1. The deferral option model can be solved in several steps as

follows.

Step 1: To simulate fuel prices and estimate the net present values of total costs

Here, we use the method proposed by Dixit and Pindyck (1994) to estimate the param-

eters of IFO and LNG prices in Eqs. (6), (7). Because LNG prices at both Henry Hub in

the USA and Japan are considered in this research, ηo, ηghh, ηgjp, �Po , �Pghh , �Pgjp , σo, σghh
and σgjp are required to be estimated. First, the sample data are used to estimate the

parameters ao, bo, aghh, agjp, bghh and bgjp in the following equations by OLS:

Pt
o−P

t−1
o ¼ ao þ boP

t−1
o þ εto ð11Þ

Pt
ghh−P

t−1
ghh ¼ aghh þ bghhP

t−1
ghh þ εtghh ð12Þ

Pt
gjp−P

t−1
gjp ¼ agjp þ bgjpP

t−1
gjp þ εtgjp ð13Þ

Next, we can obtain the corresponding parameters as follows:

Fig. 1 Weekly IFO and MGO prices over the period of Jan 1990 to June 2015. Source: authors’ own
elaboration based on data from Clarksons Research Co. Ltd
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�Po ¼ ao=bo ð14Þ

ηo ¼ − log 1þ boð Þ ð15Þ

σo ¼ σε;o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ boð Þ
1þ boð Þ2−1

s
ð16Þ

�Pghh ¼ aghh=bghh ð17Þ

ηghh ¼ − log 1þ bghh
� � ð18Þ

σghh ¼ σε;ghh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ bghh

� �
1þ bghh
� �2−1

vuut ð19Þ

�Pgjp ¼ agjp=bgjp ð20Þ

ηgjp ¼ − log 1þ bgjp
� � ð21Þ

σgjp ¼ σε;gjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ bgjp

� �
1þ bgjp
� �2−1

vuut ð22Þ

Where σε, o, σε, ghh and σε, gjp are the standard deviations of regression equations, re-

spectively. Pghh refers to LNG prices at Henry Hub, Pghh denotes the mean of the vari-

able Pghh. Pgjp refers to LNG prices at Japan, Pgjp denotes the mean of the variable Pgjp.

Fig. 2 Weekly LNG prices at Japan and Henry Hub over the period of Jan 2000 to June 2015. Source:
authors’ own elaboration based on data from an Energy Consultancy Company in Beijing
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It’s obvious that prices of IFO and MGO are closely related, because they are both

products from crude oil. The price fluctuations are modelled as perfectly correlated

based on the long-run average between both variables. (the long-run average could be

derived from the cointegration relationships between IFO and MGO and the process

could be obtained from Authors)

logPmgo;t ¼ αlogPo;t þ β ð23Þ

Where Pmgo, t refers to MGO price, Po, t means IFO price at time t, α is the parameter

and β the intercept.

For IFO prices, the data set used in our study consists of weekly IFO prices in

Singapore covering the period from Jan 12th, 1990 to June 26th, 2015, yielding a sam-

ple of 1325 observations. For MGO prices, the data set comprises 1325 observations as

well. For LNG prices at Henry Hub, the data set consists of weekly data from Jan 7th,

2000 to June 26th, 2015, producing a sample of 804 observations, and the same sample

is applicable for LNG prices at Japan as well. Based on these sample data, we use

Eviews 6.0 to obtain the estimated values of ao, bo, aghh, agjp, bghhand bgjp and calculate

parameters of regression equations. Results are presented in Table 6.

Once parameters are known, they can be used to simulate weekly price patterns

during the next 25 years i.e. July 2015 to July 2040. In every pricing run, 300 paths are

simulated for IFO, LNG prices at Henry Hub and LNG prices at Japan, and each of 300

paths is assumed to be equally likely. For each type of maritime fuels, we can acquire a

matrix with observations of 1330 × 300. Based on the long-run relationship between

IFO and MGO, the price patterns of MGO can be obtained as well. Figure 3 demon-

strates one sample of price patterns for three maritime fuels.

Once we get simulated prices of maritime fuels over the period of June 2015 to June

2040, annual voyage costs could be estimated. The LNG costs of the LNG powered

vessel are estimated based firstly on LNG prices at Henry Hub. The impacts of LNG

prices at Japan on the changes of the total costs and the final investment decision will

be discussed in the sensitivity analysis. Since daily operational costs and newbuilding

prices are known for two types of chemical vessels, the net present value of total costs

of running 20 years for both types can be estimated based on Eq. (4). Specifically, the

investment option will be exercised within the period of 2016 to 2020, so for the first

year (2016), the net present values of total costs over the next 20 years, i.e. 2016 to

2036 for 300 sample paths could be estimated. For the last year of this period (2020),

NPVs of total costs over the next 20 years, i.e. 2020 to 2040 for 300 sample paths could

Table 6 Parameters of variables in Eqs. (6)–(7) and (23)

Parameters Estimates Parameters Estimates Parameters Estimates

IFO ηo 0.002456 Po 5.5638 σo 0.0377

MGO α 0.894557 β 1.1109 – –

LNGhenry hub ηghh 0.01616 Pghh 1.5653 σghh 0.04939

LNGjapan ηgjp 0.01376 Pgjp 2.1945 σgjp 0.05562

ηo is a generalized drift parameter and σo is a generalized diffusion parameter. Po is the mean value of oil-based fuel
prices. α is the parameter and β the intercept in the cointegrating vector of the cointegration relationships between IFO
and MGO. ηghh is a generalized drift parameter and σghh is a generalized diffusion parameter. Pghh denotes the mean
value of LNG prices at Henry Hub. ηgjp is a generalized drift parameter and σgjp is a generalized diffusion parameter. Pgjp
denotes the mean value of LNG prices at Japan and WΔt can be simulated with a normal inverse function with ε

ffiffiffiffiffi
Δt

p
where ε~N(0, 1)
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be estimated. Finally, we get a matrix of discounted costs with observations of 6 × 300

for each type of vessels. Once the discounted total costs are known, we can make a

comparison of costs between a LNG powered vessel and a reference one. The net

present values of total costs for both types of vessels in the case of ECA 25% are dem-

onstrated in Table 7.

Step 2: to determine the optimal stopping time by using LSM program

In order to use the LSM algorithm, the option needs to be exercised in discrete times

in the interval [0, T]. In this research, the time to maturity is 2020, the investment op-

tion could be exercised within the period of 2016 to 2020, so intervals (n) are 6 and the

length (Δt) is equal to 1. The underlying variables (Pg;tn and Po;tn ) are then simulated

with 300 paths.

Fig. 3 One sample of simulated prices for maritime fuels over July 3rd 2015 to July 6th 2040

Table 7 The net present values of total costs each period for 300 sample paths for two types of
vessels (unit:$)

Sample path j 1–20a 2–21 3–22 4–23 5–24

1 93,652,148 94,619,235 96,308,355 97,813,552 99,229,020

2 87,457,616 86,617,530 85,429,349 84,239,065 83,983,471

3 91,875,435 92,990,715 94,714,786 96,839,855 99,295,831

114,598,621 116,251,992 117,713,689 118,678,309 119,689,962

298 93,650,277 93,710,972 93,995,208 94,113,740 94,653,258

299 93,532,797 94,041,005 94,933,723 95,451,127 95,576,234

300 82,098,887 82,644,984 83,956,705 85,022,315 85,737,473

Part 2: The net present values of total costs each period for 300 sample paths for a LNG powered vessel

1 79,517,962 80,917,733 81,922,366 82,876,357 84,012,918

2 80,967,571 82,311,144 83,878,890 85,459,745 86,618,243

3 81,442,731 82,768,563 83,555,735 84,776,658 86,053,819

83,744,186 84,999,982 86,230,016 87,056,316 87,897,931

298 84,168,935 85,602,135 86,892,395 88,276,463 89,917,868

299 79,497,737 80,667,512 82,373,912 84,099,198 85,495,554

300 79,918,498 81,261,929 82,257,027 83,598,094 84,725,689
a1–20 means the investment in 2016 and the ship will be operated for the next 20 years. 2–21 means the investment in
2017 and the ship will be operated for the next 20 years. 3–22 means the investment in 2018 and the ship will be
operated for the next 20 years. 4–23 means the investment in 2019 and the ship will be operated for the next 20 years.
5–24 means the investment in 2020 and the ship will be operated for the next 20 years
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The optimal stopping time can be obtained using the Bellman Eq. (5) as explained in

Section of Methodology.

Φtn Pg;tn ;Po;tn

� � ¼ max πtn Pg;tn ; Po;tn

� �
; 1þ ρð Þ−ΔtE Φtnþ1 Pg;tnþ1 ;Po;tnþ1

� �� 	n o

Where πtn is the net present value of the total cost savings between a LNG fuelled

vessel and a conventional one and it is a function dependent on the stochastic LNG

prices, denoted as Pg;tnþ1 and fuel oil prices, denoted as Po;tnþ1 . tn is a time state such

that tn + 1 − tn =Δt = 1 and n = T/Δt = 6 is the final time horizon, but n = 0 is the initial

time state being solved for.

Since LSM will be used to solve the backward dynamic program, let’s start with Year

5, i.e. the year of 2020. In Year 5, the shipowner has the possibility of investing in a

new technology or deferring the investment decision. Because ΦtnðPg;tnðωÞ; Po;tnðωÞÞ
¼ maxð0;πtnðPg;tn ; Po;tnÞÞ, Keep track of the optimal decision with the variable θ(ω, t5);

if Φt5ðPg;t5ðωÞ; Po;t5ðωÞÞ > 0 (it means the present value of total costs over 20 years of a

ship burning oil-based fuels is larger than that of a LNG powered one), then that sam-

ple path is “in the money” and is assigned a value of θ(ω, t5) = 1. Otherwise, θ(ω, t5) = 0.

We continue to go to Year 4 and do the same work till Year 1.

For all of paths with a value of 1, we estimate the expected values of all costs between

two types of vessels following the approach explained in Part 2.1, and make the compari-

son between the present value of the expected value and the actual one. For example, in

Year 4, if actual savings are larger than the present value of the expected ones, then that

sample path is “in the money” and is assigned a value of 1, otherwise, the value is 0. We

go back to Year 3. If actual savings in Year 3 are larger than the expected ones, Year 4 is

replaced by Year 3, which is assigned a value of 1. It is guaranteed that there is at most a

value of 1 for one sample path during Year 1 to Year 5. Specifically, if there are all zeros

over 5 years, it means the option is worth keeping and no investment will be performed.

If there is a value of 1 in Year 1 and zeros for others, it means the best strategy is to invest

immediately. Simulated results are demonstrated in Table 8.

The LSM simulation with 300 sample paths results in a distribution of options exercised

shown in Table 9. This result indicates that in the case of ECA 25%, 77.7% of the time for

the optimal decision to exercise the 5-year investment option would lie within the first year

Table 8 Simulation results of 300 sample paths in the case of ECA 25%a

Sample path j The optimal year to exercise Option value ($) Discount rate Present value of savings ($)

1 1 18,889,317 1 18,889,317

2 2 8,481,576 1.26248 6,718,203

3 0 0 0 0

4 2 7,095,164 1.26248 5,620,021

5 0 0 0 0

298 1 15,268,176 1 15,268,176

299 1 20,818,910 1 20,818,910

300 0 0 0 0

Simulated option value: 10,066,289
aECA 25% means a ship operates 25% inside ECAs annually
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of realization. However, there is 18% of the time of choosing no investment within 5-year

period. The option value of all options exercised during 5 years reaches over $10 million.

Step 3: to consider some scenarios

First, we assess the abatement option with focus on the operation time in the emission

control areas (ECAs). Figure 4 shows the probability of exercising an option for vessels

which operate 25% of one year within ECA waters and the second for vessels which oper-

ate 50%, and the third for vessels operating 100% in the ECAs. The main observations

from Fig. 4 suggest that an increase in the time spent in an ECA would increase the

attractiveness of investing in a new LNG powered ship, and an immediate investment

decision would be more preferable for all cases. In particular, when a ship operates the

whole year inside an ECA, the probability of no investment is reduced to below 10% and

that of exercising option at the first year is clearly increased to 90%. If studying further all

of these options exercised, we find that on average LNG needs a rebate of $100–$150 per

ton to be competitive, bolstered by the findings in Lindstad et al. (2015).

Figure 5 compares the probability of exercising an option and the call option values

for different new-built ship values. It should be noted that in our research it is the

benchmark level for the ship value of a LNG powered ship 20% higher than a conven-

tional one. Suppose a vessel operates 25% of one year in an ECA. In this case, when a

ship burning LNG is 30% more valuable than that of a reference one, 67% of the time

for the optimal decision to exercise an investment option would lie within the first year,

decreased from 77.7% when the price differential remains at 20%. While when the price

differential is narrowed to be 10%, the probability of exercising the investment option

Table 9 Sample distribution of time to exercise option for each year in the case of ECA 25%

Year 2016 2017 2018 2019 2020 No exercise Option Value

Frequency 233 9 1 1 2 54 $100,266,289

Percent 77.7% 3% 0.3% 0.3% 0.7% 18%

Fig. 4 Probabilities of exercising option for various operating time within ECAs. Notes: ECA25% means the
amount of time spent sailing in an ECA is 25% of one year; ECA50% the amount of time spent sailing in an
ECA is 50%; while ECA 100% implies that a ship operates the whole year in an ECA
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is significantly increased to be 83% and that of deferring the decision to the future or

no investment over the 5-year period is declined to be 13.7%.

The similar findings can also be detected in the other two cases of ECA 50%, i.e. a

vessel operates 50% of 1 year in an ECA and ECA100%, i.e. a vessel operates the whole

year in an ECA. It is clearly seen that if a vessel spends more time sailing in an ECA

and the ship is cheaper, this option would be more attractive. The results suggest that

an immediate investment is more attractive and deferring the investment tends to be

less valuable in general compared to the first case. It is interesting to find that if a

vessel using LNG spends the whole year sailing in an ECA and the ship value is only

10% higher than that of a reference one, the result prefers an immediate investment in

2016, and the probability of no investment during a 5-year period is shrunk to 5.3%.

It may be claimed that the model suggests an investment option in LNG depending

on three parameters: the price differentials between LNG and oil-based fuels, the differ-

ence of new-building prices between a new ship burning LNG and a conventional one

burning traditional maritime fuels, and the share of operation within ECAs.

Regarding the supply cost of LNG prices, we compare the impact of supply cost’s

changes on the investment decisions. It is noted that the supply cost of LNG prices is set

initially at 10% of the market price in our case at the voyage of Ulsan-US Gulf. Figure 6

shows how the distribution of time to exercise option changes when the supply cost

changes. It is observed that when the supply cost is increased to be 30% from an initial

10%, the probability of an immediate investment will be reduced by 10.7, 9 and 9% if it

operates 25, 50 and 100% of 1 year in an ECA, respectively. The deferral decision can be

used to reduce some of the variability or technological uncertainties related to the supply

cost of bunkering LNG.

As far as LNG prices at different bunkering stations are concerned, we investigate the

impact of different LNG prices on the investment decisions. When the LNG powered

ship bunkers LNG at Japan instead of Henry Hub, the costs will be changed signifi-

cantly. The simulation is again made by using LNG prices at Japan, and results in Fig. 7

demonstrate a significantly different distribution of time.

Fig. 5 Sample distribution of time to exercise option for various ship values regarding different operation
time in an ECA for each path. Notes: 1ECA means a LNG powered ship is 10% more expensive than that of
a conventional one. 2ECA implies that the ship price of a LNG powered ship is 20% higher than that of a
conventional oil fuelled one. 3ECA denotes that the price differential between two types of vessels reaches
30%. ECA 25% denotes that a vessel runs 25% of one year in an ECA and ECA 50% indicates that a vessel
operates 50% of one year in an ECA and ECA 100% means that a vessel runs the whole year in an ECA
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For the cases of ECA 25 and ECA 50%, the results prefer waiting and no investment

within the 5-year period. For the case of ECA 100%, only 12.3% of the time to exercise

option would lie within the first year, and the result still suggests deferring the invest-

ment to the future after 2020 at the probability of 68.7%.

In general, deferring the investment appears to be more valuable as a strategy if LNG

prices at Japan are used in the model. This could be explained by higher mean values

and bigger standardised deviation of the simulated LNG prices at Japan. In other words,

LNG prices at Japan are significantly higher than those from Henry Hub in the USA.

The bigger variability and mean values of LNG prices affect substantially the total

savings obtainable between the operation of two types of vessels.

The results indicate that there is no single answer to what is the best optimal time of

making an investment in a LNG fuelled ship. The best timing would be dependent on

Fig. 6 Sample distribution of time to exercise option for different supply costs for each path. Notes: ECA
means the supply cost is set at 10% of LNG prices and ECA* means the supply cost is increased to 30%.
ECA 25% denotes that a vessel runs 25% of one year in an ECA; and ECA 50% indicates that a vessel
operates 50% of one year in an ECA and ECA 100% means that a vessel runs the whole year in an ECA

Fig. 7 Sample distribution of time to exercise option for LNG prices at different stations for each path.
Notes: ECAjapan 25% means LNG prices at Japan in the case of ECA 25%. ECAhh 25% denotes LNG prices
at Henry Hub in the case of ECA 25%. ECAjapan50% refers to LNG prices at Japan in the case of ECA 50%.
ECAhh 50% refers to LNG prices at Henry Hub in the case of ECA 50%. ECAjapan100% refers to LNG prices
at Japan in the case of ECA 100%. ECAhh 100% denotes LNG prices at Henry Hub in the case of ECA 100%
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the amount of time spent sailing in ECAs, the price differential of ship values between

two types of vessels, the supply cost related to the consumption tax and bunkering

cost, and LNG prices at different stations.

Conclusions
The investment in LNG fuelled vessels is currently facing a high degree of uncertainty,

such as the differential between the prices of LNG and conventional maritime fuels, the

availability of LNG and the reliability of its supply chain. The discounted cash flow

techniques cannot incorporate the flexibility to respond to new information and to

defer the investment, therefore, real options analysis is favoured by academia to accom-

modate flexibility in the investment decision so that the valuation of a project can

reflect operating and strategic adaptability.

The real options literature describes methods for quantifying the value of flexibility

to execute such a strategy. Until recently, Chow and Regan (2011) have proposed an

option methodology for network designs that feature multidimensional and stochastic

variables. To date it has been the first time such an option methodology has been con-

sidered in deferring an investment in a LNG powered new ship related to environmen-

tal compliance in shipping. The proposed deferring option model is a numerical option

evaluation method using the LSM algorithm to solve a backward dynamic program.

The prices of maritime fuels are assumed to follow the mean-reverting geometric

Brownian motion, which are contained in the deferral option model. The model is

solved following LSM algorithm proposed by Chow and Regan (2011). Based on the

mean-reverting geometric Brownian motion equations, 300 sample paths of simulated

weekly fuel prices over the period of 2015 to 2040 can be generated. Once fuel prices

are given, the savings of the total costs for two types of chemical vessels can be com-

puted. The deferral option model proposed in this paper can be solved by simulation

within Matlab and the distribution of time to exercise option and the call option values

are obtained for each path.

Results indicate that the attractiveness of LNG as the ship fuel compared to the use

of distillate fuels is dominated by several parameters, including the price difference

between LNG and IFO; the share of operation inside ECAs, the differential of new ship

values between a LNG powered ship and a reference one and the supply cost.

The model to predict costs for LNG systems on board chemical vessels offers exten-

sive possibilities to study additional variants. Options include different vessel sizes, fuel

consumption of vessels, route profiles, and other LNG related operational costs.

In our study, we only examine the possibility of investing in a LNG powered vessel to

comply with emission requirements of SOx and NOx. While the contribution of LNG as the

ship fuel to CO2 reduction sparks off considerable debate and it will be left for further study.
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