The following chapter provides an overview of the fundamental data considering the port traffic and principal port indicators to determine the current trends which affected their operational activity and generated environmental pollution.
The overview of the port productivity indicators affected by the congestion
Following the supply chain disruption crisis, many new indices measure the diversity of global economic data, e.g., the supply, container shipping efficiency, logistics pressure, supply chain pressure, trade indicators, and others. They reveal the strong commitment to resolve the logistics constraints and eradicate the uncertainties caused by the pandemic. The trans-pacific corridor has been the busiest container world route, transporting 31.2 million TEUs in 2020 or 21% of the world's container trade (UNCTAD 2021). On the western part of the shipping lane, the Port of Los Angeles (LA) has been the central gateway for international trade in the Western hemisphere. Besides the Los Angeles port, the San Pedro Bay Port Complex also includes the Port of Long Beach (LB), which acts as a diverse entity and separate department (Port of LA 2021a). These ports (LA&LB) jointly contribute to 40% of all seaborne container imports in the USA. The Port of Los Angeles handled 10.7 million TEU in 2021, an increase of 15.9% compared to the previous year, while the Port of Long Beach reported growth of 15.7% or 8.1 million TEU. The combined container handled volume of the two ports in the San Pedro Bay was 20.1 million TEU in 2021. The causes of these astonishing results are in various operational, behavioral, market, and other factors mainly influenced by the change in consumer demand related to pre-pandemic periods. The US e-commerce rose exponentially in 2020 by 32.6%, more than double the share recorded in 2019, while the projection for 2021 is set to 16.1% (S&P Global 2021). The shift in buying habits, or demands for goods, initiated the surge in demand for containerships, which were affected by imbalances and shortages of overall container movement capacity. These consequences resulted in a spike in shipping prices. The combination of high demand for goods and manufacturing supplies in the US, and short supply of containerships, caused historical port congestion in the US main import ports, Port of Los Angeles and Long Beach. There were more than 100 ships in the queue and unbelievable 23 waiting days for berth available in the Port of Los Angeles and Long Beach (Kent and Haralambides 2022). A severe bottleneck had an implication not only on the maritime component of the intermodal chain but also on disruption inland, like the issue of repositioning empty containers stuck on terminals, lack of warehouse space, short supply of chassis, and shortage of workers, especially in trucking business and warehouses, both affected by the COVID-19 pandemics (CNN 2021). Thus, the inability to receive the cargo from containerships and further to distribute the outbound containers by truck disrupted the supply chain. Overall, the waiting time of containers on terminals designated for export has increased to two weeks, a change of three to four days more than recorded in the pre-pandemic era (Klachkin 2021). Roughly 35% of the intermodal containers in LA port are handled by rail, which contains one near-dock railyard and five additional on-dock railyards for seven container terminals (Port of LA 2021b). Since the outbreak of COVID-19, these intermodal loads transported by rail decreased by over 1% of the market share compared to long-distance trucking service despite the advantages in costs and environmental competitiveness (Gross Transportation Consulting 2022). The severe congestion negatively affected the fundamental indicators of port productivity, performance, transit time, berthing time, and dwell time (Lloyd's List 2021). Average weighted dwell time, which represents the time a container spends at the terminal after completion of the unloading activity from a containership and taken off by a truck, for a laden inbound container in San Pedro Bay increased by 72.6% in November 2021 when comparing the same values recorded in November 2020. Also, by calculating the average dwell time in days for the individual business year, where the percentage reflects the share of containers held at LA&LB container terminals for more than five days, the year-on-year increase of almost 250% was accomplished in 2021 and peaked in November when the share was around 50% (PMSA 2021). Figure 1 represents the share of containers that remained at San Pedro Bay terminals for more than five days.
Contrary, the average rail dwell time was 8.6 days in 2021, having a peak in April (12.4 days). An overall downward trend in the second half of the year culminated with a dwell time of 3.5 days in November (PMSA 2021). As already mentioned, the transit and berthing time also suffered the harsh impact of port congestion. The transit time from ports located in China until container discharge in ports LA&LB rose by more than double, from the nominal 16 days (route Ningbo, Qingdao, Shanghai, Yantian, LA&LB) of sailing to more than 35 days. With a delivery time to the final customer included, the overall transit time increased more than 50% from the original 25 days. Berthing time in the ports of LA&LB also peaked in later 2021, an average of 8 to 9 days in the last quarter (Lloyd's List, 2021). The Ports of LA&LB productivity can be expressed through the import–export ratio of full and empty containers. Throughout the calendar year 2021, the ports exported three empty containers for every loaded container, which clearly illustrates the trade imbalance and terminal congestion. Contrary, almost every imported container to the ports of LA&LB was loaded (full) (Port of LA 2022; Port of LB 2022).
Analysis of port traffic data in the anchorage area of the LA&LB ports
In San Pedro Bay, the overview of the issues can be expressed through the indicator of the overall number of anchored containerships, waiting for berth allocation in the ports’ areas of LA and LB by months throughout the year. According to the historical overview of vessel activity, the number of vessels at the anchorage area of Los Angeles and Long Beach ports is shown in Fig. 2. The values in December 2021 were down drastically compared to the previous month due to the new calculation method implemented for queuing and counting container ships.
Figure 2 shows the port congestion expressed through the number of ships at berth in the area of ports LA and LB on a given dates, from January 15, 2019, to January 15, 2022. The values recorded throughout 2021 on a specific date show an exponential increase in the number of anchored vessels compared to the levels recorded in 2020. The difference in the number of the ships at anchor at a specific date in a month, considering the period January 2020–December 2021, increased from 1.3 to 37 times. These levels confirm the harsh impact of all the factors indicated, individually contributing to the disruption in the ports and proportionally to the overall supply chain. The vessels at berth have been excluded from the group of total anchored vessels. The number of ships on berth is a variable factor with neglected deviation, mainly for limited capacity and stable demand. In mid-November, a new model for queuing and counting container ships waiting outside the 40-mile "in port" zone was applied. It is based on the methodology which directs containerships to a specially designated Safety and Air Quality Area (SAQA) that extends 150 miles to the west of the ports and 50 miles to the north and south, waiting to be assigned a berth to unload cargo. Furthermore, besides the intention to lower the pile-up of ships close to the port entrance, the relocation of vessels aimed to decrease potential risks to maritime safety and improve air quality (MXSOCAL 2021). SAQA is shown in Fig. 3.
Additionally, when analyzing the ratio of combined monthly import volumes (in TEUs) to the TEU capacity of ships waiting on the anchorage and in the queue at the end of a specific month, the capacity of the ships waiting offshore exceeds the throughput of ports LA/LB in December 2021 (Fig. 4). The ships' capacity at anchor and SAQA increased by almost 650,000 TEU, while import volumes diminished by close to 240,000 TEU when comparing the values in December and May 2021.
Besides the extraordinary results recorded and volumes handled in 2021, for ports LA and LB, the general productivity of the import volumes was driven by the performance achieved throughout the first half of the year, while it decreased when approaching the end of the year (Fig. 5).
The decreasing trend of container imports in the second half of the year 2021 was an implication of the port and inland congestion, which occurred and influenced the global trade, and proportionally raised the container freight rates. Figure 6 shows the overview of containership activity inside 25 miles, considering the total container vessels in-port, ships at anchor, and berthed, from January 1st, 2019 to February 10th, 2022, for the ports in LA and LB. The conventional number of containerships at anchor in the pre-pandemic period was 0–1. The highest density of cellular ships were recorded on November 16th (2021), when 86 container vessels were at anchor or loitering inside 25 miles, which contributed to 116 reported containerships in-port, thus at berth, anchored, or loitering inside 25 miles (red circle).
Next to the new queuing model, a significant drop in all observed indicators was visible. The decline in the total number of container vessels in-port, anchored, and loitering ones inside 25 miles of LA and LB ports coincides with the increase of the total number of container vessels outside the SAQA.
Figure 7 shows the overview of containership activity inside 25 miles combined with the number of ships outside SAQA considering the total container vessels imported, anchored, and berthed ships, from January 1st, 2019–February 10th, 2022 for the ports in LA and LB.
The grey line represents all containerships inside 25 miles at anchor or loitering and those loitering or slow speeding outside SAQA. On January 9th, there was a record high congestion, which amounted to 109 containerships. Figure 8 illustrates the effects of the new queuing system implemented by comparing the state of the SAQA area and shipping lanes on November 16th, 2021, and February 3rd, 2022. In November 2021, the images indicated 62 loitering vessels, and in February 2021, there were none of them, contributing to the overall safety and air quality.